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Diffusion in Concentrated Lattice Gases 

K. W.  Kehr I 

The diffusion of many particles on a lattice is an example of a correlated 
random-walk process. Recently the waiting-time distributions for two consecu- 
tive jumps of a tagged particle have been determined numerically and the 
time-dependent correlations analyzed in detail. The information over these two 
consecutive jumps is used to determine the position and velocity autocorrelation 
functions, and very satisfactory results are obtained for three-dimensional lat- 
tices. However, the information of the two consecutive jumps is insufficient 
when the jump rate of the tagged particle is large compared to that of the other 
particles, and this approximation fails completely in one dimension. For the 
linear chain, another approximation which accounts for correlations over all 
jumps is compared with the numerical simulations. 

KEY WORDS: Lattice-gas models; tracer diffusion; continuous-time ran- 
dom walk; correlated random walk. 

1. I N T R O D U C T I O N  

In  this con t r ibu t ion  the cor re la ted  r a n d o m  walk  of the par t ic les  of some 
la t t ice-gas  mode l s  is invest igated.  The  models  consist  of regular  lat t ices in d 
d imens ions  (for s impl ic i ty  of cubic  symmetry) .  The  sites are par t ly  occup ied  
by  par t ic les  with given concen t ra t ion  c (0 < c < 1). One or  several  " t r ace r"  
par t ic les  will be d is t inguished f rom the others.  D o u b l e  occupancy  of sites is 
a lways  excluded.  M a i n l y  the case will be  discussed where  no  fur ther  
in terac t ions  are  present  a n d  the sites are occup ied  at  r andom.  Each  par t ic le  
can  j u m p  with ra te  F to an  empty  site; the t racer  par t ic les  have  the same 
rate,  or a different  rate  F ' .  In te rac t ion  of the par t ic les  can  also be  consid-  
ered, e.g., in fo rm of an  Ising-l ike shor t - range  a t t rac t ion .  The  oc c upa t i on  of 
the sites will then exhibi t  shor t - range  a n d  poss ib ly  long-range  order .  The  

Presented at the Symposium on Random Walks, Gaithersburg, MD, June 1982. 
I Institut fiJr Festk6rperforschung, Kernforschungsanlage JiJlich, 5170 JiJlich, Federal Repub- 

lich of Germany. 

509 
0022-4715/83/0200-0509503,00/0 �9 1983 Plenum Publishing Corporation 



510 Kehr 

jump rate of the particles must now include the energy differences between 
the final and initial states. The collective diffusion is simple in the noninter- 
acting case, since it can be reduced to a single-particle problem. (~) The 
diffusion coefficient that appears in Fick's law is Dcoll = Fa 2, independent 
of concentration. Dcoll is influenced by the interactions, where phenomena 
such as critical slowing down near a critical point occur. (2) The tracer 
diffusion coefficient, determined from the mean-square displacement of the 
tagged particles, is nontrivial already in the noninteracting case. The tagged 
particles perform a correlated random walk, mediated by the presence or 
absence of other particles which also move on the lattice. The mean-field 
expression for the tracer diffusion coefficient is Dt MF = (1 - c)Fa 2 (first the 
case F' = F is considered). The factor 1 - c represents the mean blocking of 
the sites. It was pointed out by Bardeen and Herring (3~ in the context of 
tracer diffusion in metals that this expression neglects important correla- 
tions. Namely, when the tagged atom has made a jump, there is a vacancy 
behind the atom immediately after the jump. The presence of this "special 
vacancy" leads to an inherent backward correlation of the random walk of 
the tracer. A correlation factor f ( c )  is introduced by defining D t = 
DtMFf(c); normally f ( e )  < 1. Tracer diffusion in metals corresponds to the 
limit c ~ 1.(4) The general case has been studied numerically by Murch and 
Thorn (5) and theoretically by several authors. (6) In this contribution the 
diffusion of tagged particles in the concentrated lattice gas will be discussed 
from the aspect of a correlated random walk. Special attention will be given 
to the time dependence of the correlations. In particular, the "special 
vacancy" mentioned above can be filled by other particles. This should 
lead to a strong time dependence of the backward correlations, as will be 
seen below. 

2. WAITING-TIME DISTRIBUTIONS 

The time-dependent correlations of the random walk of a tagged 
particle in the lattice gas will be characterized by waiting-time distributions 
(WTD). They have been introduced by Montroll and Weiss (7~ to describe 
continuous-time random walk (CTRW) with general time dependence of 
the steps. The waiting-time distribution ~( t )d t  of a particle, which has 
made its last jump at t - - 0 ,  is defined as the joint probability that it 
remains at the site until time t and jumps between t and t + dt. In order to 
include the spatial correlations it is necessary to distinguish between the 
WTD for backward jumps and WTD for forward or sideward jumps. The 
sum of the WTD for backward and forward or sideward jumps will be 
normalized to unity. The WTD for backward jumps is expected to be 
strongly time dependent, since the probability for backward jumps is 
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increased at small times, while for large times the WTD for backward 
jumps should approach that for forward jumps. 

The WTD have been determined by numerical simulation of diffusion 
on a fcc lattice with N = 16384 sites and various concentrations of parti- 
cles.(8) Each particle is considered as tagged, and equipped with a clock. 
The time intervals between two consecutive jumps of the particles are 
determined, classified according to the relative jump directions, and col- 
lected in time histograms which represent the WTD. The time unit of the 
simulations is the Monte-Carlo step (MCS) per particle, defined as a total 
number of attempted jumps equal to the number of particles. 

In the fcc lattice there are five different orientations of a jump of a 
particle with respect to its preceding jump: backward jumps b(1), and 
jumps to neighbors of the order 1(4), 2(2), 3(4), and 4(1), relative to the 
starting site of the preceding jump. The numbers n~ of sites of each type 
have been indicated in parentheses. Figure 1 gives the results of the 
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Fig. 1. Waiting-time distribution for backward jumps (e), and forward jumps to sites of type 
1 ( + )  and type 4 ( x ) ,  for c = 0.182, 0.498, 0.777, and 0.988. 
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simulations for ~b(t), ~l(t), and ~4(t), at 4 concentrations. Not shown are 
~2(t) and +3(t); they are practically identical to ~4(t). One recognizes the 
following features: For t ~ 0 the WTD for backward jumps approaches the 
jump rate F in the empty lattice (12F = 1 when the time is measured in 
MCS/particle). For t ~ 0 the WTD for forward jumps approach the value 
( 1 -  c)F. There is an intermediate increase of ffl(t) at the two larger 
concentrations, compared to q~4(t). This feature is peculiar to the fcc lattice: 
the special vacancy can move to a neighbor site of type 1 and thus enable 
the jump of the tagged atom to it. 

In order to further analyze the WTD, time-dependent conditional 
jump rates will be introduced, the condition being that no jump of a tagged 
particle has occurred between 0 and t. They are related to the WTD 
through (i = b, 1 . . . . .  4) 

[-- ,1 4nJfotdt'Fj(t')] (1) ~Pi(t) = Fi(t)exp j=b~ " 
The rapid decay of the backward correlations can now be analyzed 
quantitatively. It is given, apart from a small correction term, by 

Fb(t ) -- F4(/) ~-, CF exp[ -- l i f t ]  (2) 

This expression can be deduced from the stochastic process of the filling of 
a vacancy in the lattice gas by the other particles. (8) One notes that the 
concentration of the lattice gas does not appear in the decay rate. Further, 
one finds that for large times the jump rates approach smaller values than 
predicted by mean-field theory, Fi(t---> ~)--->(1 - c*)F, where e* = c + 
and a(c) is a phenomenological parameter. For example, at c = 0.498 the 
value of ~ is 0.048. The reduction of the jump rate at large times is 
probably caused by clusters of higher than average concentration which 
retain the tracer particle immobile. The reduction is also necessary for 
proper normalization of the sum of the WTD. The rate Fl(t ) for sideward 
jumps of type 1 can be quantitatively deduced by taking the jump process 
of the special vacancy to these sites into account. ~8) In summary, one can 
say that the overall behavior of the WTD for consecutive jumps of tagged 
particles in three-dimensional lattice gases is understood. 

3. APPROXIMATION OF CORRELATED CONSECUTIVE JUMPS 

This section indicates the derivation of the autocorrelation function of 
the tagged particle. Its random walk has been characterized by general 
WTD, hence a CTRW description must be employed. In addition, the 
WTD depend on the direction of a jump relative to the preceding jump, 
hence a correlated random walk must be considered. Both characteristics 
are incorporated by the approximation of correlated consecutive jumps, 
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sometimes also called "backward jump model." Correlated random walk 
has been introduced by Taylor (9) and Goldstein. (l~ The extension to 
CTRW has been made by Haus, Zwerger, and the author, (1~) and Land- 
man and Shlesinger. (12) Correlated random walk can be considered as a 
special case of random walk with internal states. Formally, the derivations 
are extensions of the classic CTRW theory of Montroll and Weiss. (7) 

The derivation of the position autocorrelation function for the back- 
ward jump model on a fcc lattice requires the solution of 12 coupled linear 
equations, which reduce to 5 or 3 equations in the main symmetry direc- 
tions. The results are given in Ref. 8. The frequency-dependent diffusion 
coefficient, identical with the Fourier transform of the velocity autocorre- 
lation funtion, is 

Dt(~o ) = DtMFf(r (3) 

with the frequency-dependent correlation factor 

1 + A(~o) 
f(o~) = Re 1 - A(o~) (4) 

and 

A(~0) = f0~dt  exp(-icot)I~P4(t ) + 2+3(t ) - 2~bl(t ) - ~b(t)] (5) 

In the static case the correlation factor is given by 

1 + A(0) 
f ( 0 )  -- 1 -- A(0) (6)  

This form is typical for the correlated random walk, and A(0) = (cos 0)  is 
the average of the angle between consecutive jumps, 

(COS 0 ~ ~--- ~ H/COS 0 i dt ~ i ( t )  (7) 
i=b, 1 . . . 4  

Hence the dynamical information on the jump process enters ( c o s 0 )  via 
the integrals of the WTD. 

The integrals over the WTD have been estimated in the course of the 
numerical simulations. The correlation factor according to Eqs. (6) and (7) 
has been compared in Ref. 8 to the correlation factor determined directly in 
the simulation. One representative value appears in Table I and Fig. 2, for 

Table I. Theoretical and Simulated Correlation Factor for c A = 0.876 

F'/F 0.1 1 10 100 

(cos 0) - 0.0146 - 0.0983 - 0.3596 - 0.5448 
ftheor 0.971 0.821 0.471 0.295 
fs~m 0.99 0.83 0.37 0.095 
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Fig. 2. Correlation factor for tracer with different jump rate. The full line represents Eq. (9) 
and the dashed line is a fit with an asymptotic power law according to Eq. (11). The crosses 
( •  indicate the theoretical correlation factor of Table I. 

F = F'. One notes very good agreement between the directly and indirectly 
determined values, hence the approximation of correlated consecutive 
jumps seems to be very satisfactory in three-dimensional lattice gases. The 
frequency dependence of Dt(~0 ) has not yet been tested by the simulations. 
It should be pointed out, however, that the zero-frequency value Dr(0 ) is 
most sensitive to the proper inclusion of correlations. For very high 
frequencies, ~0 >> 12F, the diffusion coefficient D t ( ~  ) approaches the mean- 
field result Dt MF, according to Eqs. (3)-(5), as it should be. 

4. DIFFERING JUMP RATE OF THE TRACER PARTICLE 

Now the jump rate I" of the tracer particle is chosen different from 
that of the other particles (called A). In order to achieve sufficiently 
accurate results in the numerical simulations, a finite concentration of 
tracer particles (called B) must be taken. A typical set of numbers is 
N = 4000 lattice sites on a fcc lattice, 2576 A particles and 26 B particles. It 
was checked that the results were practically independent of the concentra- 
tion c B of the B particles. A correlation factor for the tracer diffusion of B 
particles in the limit c B << c A will be defined through 

D, 8 = (1 - cA)F'a2f(CA, r,/r) (8) 

Variation of both parameters c A and F ' / F  allows one to cover quite 
different physical situations, as is seen in Fig. 2. 

(i) For F'<< r the correlation factor approaches 1. This is the case of 
motion of the tracer particles in a rapidly fluctuating background where 
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correlation effects quickly disappear. Hence the mean-field description 
applies. 

(ii) When c A ~ 1 a formula given by Manning (13) can be applied, 

f 
f(cA 1 , r ' / r )  = f +  (1 - f ) r ' / r  (9) 

where f is the usual correlation factor f ( c )  for equal jump rates. For 
F'/F--> ao 

De s --> ( 1 c f - A) T__f  ra~ (lO) 

In this limit the diffusion coefficient of the B particles is determined by the 
jump rate F of the A particles. When c A ~ 1 the concentration of vacancies 
c v is clearly less than their percolation concentration Cev ( ~  O. 199 in the fcc 
lattice); hence diffusion must cease when the A particles become immobile. 

(iii) For 1 - c A ~., cpv and F ' / F  --> ~ a power-law behavior is observed, 

f ( c  A ~ 1 - C?v, r ' / r ,  ~)---> const • ( r / r ' )  ~ (11) 

This behavior is in agreement with scaling laws near the percolation 
threshold.( t4> 

(iv) When 1 - c A > c?v diffusion of tracer particles is possible even 
when the A particles are immobile. Hence the correlation factor will 
approach a finite value, 

f ( c  A < 1 - Cpv,  r' /r  fR(cA) (12 )  

The residual value fs  should follow from the theory of diffusion of a 
particle in an incomplete lattice. 

Also the waiting-time distributions between consecutive jumps of 
tagged B particles have been determined by numerical simulation, for 
larger c A . In order to achieve sufficiently good statistics somewhat larger 
particle numbers are necessary, for example N = 13500, N A = 11832, and 
N B = 623. Some deviations from the limit c~ << 1 are now visible. The 
results for the WTD will be discussed in detail in a subsequent publica- 
tion.( 15~ Here only some features will be indicated. For t ~ 0 the WTD for 
backward jumps approaches F' for small times, whereas the WTD for 
forward jumps approach approximately (1 - cA)I". There is a rapid decay 
of the WTD of backward jumps towards the WTD of forward jumps, 
governed by the jump rate F of the background (A) particles. 

It is evident that the approximation of correlated consecutive jumps 
must fail in the limit 17>> F, since especially the backward correlation will 
persist over many steps of a tracer particle. The failure of the backward 
jump model for F' >> F becomes evident by comparing the ensuing correla- 
tion factor with the directly determined one; see Table I and Fig. 2. 
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It is an open question whether the long-time behavior of the autocorre- 
lation functions and thus the correct diffusion coefficient can be deter- 
mined in this situation from the knowledge of the detailed short-time 
behavior, provided by the WTD between consecutive jumps. 

5. TRACER DIFFUSION ON THE LINEAR CHAIN 

Finally diffusion of tagged particles on the linear chain will be consid- 
ered, in the case F' = F. It has been found by Richards < 16) from numerical 
simulations that the mean-square displacement of tagged particles increases 
with t 1/2 for large times. This result implies that no tracer diffusion 
coefficient exists. The presence of the neighboring particles which the tracer 
cannot pass is responsible for the strong correlations in its random walk. 
On the other hand, the numerical simulations indicate that the WTD 
behave qualitatively similarly to the three-dimensional case. They can be 
properly normalized, and also their first moment exists, 

s ~Jb(t) + lpf(t)l = [ = [ 2(1 - c)I'] ~' (13) 

Under these conditions, the approximation of correlated consecutive jumps 
predicts a mean-square displacement proportional to t, in disagreement 
with the actual behavior. Fedders < 17> could derive an expression for the 
asymptotic mean-square displacement (see below) from a rather compli- 
cated diagrammatic approach. 

Recently Van Beijeren gave an approximate derivation 2 of the velocity 
autocorrelation function of a tagged particle on the linear chain from 
random-walk considerations. His derivation discerns the role of the special 
vacancy in establishing the correct backward correlations. Hence the dy- 
namics of the special vacancy is treated explicitly. The following expression 
for the velocity autocorrelation function is obtained: 

C(s) = (l _ c)Fa2 { ~ },/2 (14) 
' + ( I  - + + 2 ( 2  - + 

where ~ = s/2F. The following asymptotic behavior of the mean-square 
displacement results: 

I 2(1 - c)FaZt Ft << 1 

<x2>'(t)=12(lcC)a2"(rt)l/2--~r Ft>>l (15) 

2 This derivation will be published together with the numerical simulations in Ref. 18. 
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Fig. 3. Mean-square displacement of tagged particles on a linear chain. Points: numerical 
simulation with 32000 sites, c = 0.5068, and periodic boundary conditions. The line indicates 
the theory. 

The long-time behavior is identical with that found by Fedders. (17) For 
intermediate times, (x2)(t) can be found by numerical inverse Laplace 
transformation of 2C(s)/s 2. The result is compared with the numerical 
simulation in Fig. 3. Both results agree quite well, although there is a small 
but systematic deviation of the simulations to lower values at intermediate 
times. Data for other concentrations, and a discussion of the influence of 
boundary conditions, will be given in a forthcoming publication. (is) 

In summary, there exists an alternative approximate theory for the 
velocity autocorrelation function of tagged particles in the one-dimensional 
lattice gas. It accounts for the correlations inherent in this random-walk 
problem and compares well with the numerical simulations. 
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